
Document .Net
(Multi-platform .Net library)

SautinSoft

Linux development

manual
Table of Contents

1. Preparing environment ...2

1.1. Check the installed Fonts availability...3

2. Creating “Convert PDF to DOCX” application ..5

3. Creating new DOCX document from scratch .. 10

https://www.sautinsoft.com/

1. Preparing environment

In order to build multi-platform applications using .NET on Linux, the first steps are for

installing in our Linux machine the required tools.

We need to install .NET SDK from Microsoft and to allow us to develop easier, we will

install an advance editor with a lot of features, Visual Studio Code from Microsoft.

Both installations are very easy and the detailed description can be found by these two links:

Install .NET SDK for Linux.

Install VS Code for Linux.

Once installed VS Code, you need to install a C# extension to facilitate us to code and

debugging:

Install C# extension.

https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp

1.1. Check the installed Fonts availability

Check that the directory with fonts "/usr/share/fonts/truetype" is

exist. Also check that it contains *.ttf files.

If you don't see this folder, you may install “Microsoft TrueType core fonts” using

terminal and command:

$ sudo apt install ttf-mscorefonts-installer

Read more about TrueType Fonts and “How to install Microsoft fonts, How to update fonts

cache files, How to confirm new fonts installation”.

In next paragraphs we will explain in detail how to create simple console application. All of

them are based on this VS Code guide:

Get Started with C# and Visual Studio Code

Not only is possible to create .NET applications that will run on Linux using Linux as a

developing platform. It is also possible to create it using a Windows machine and any

modern Visual Studio version, as Microsoft Visual Studio Community 2022.

https://linuxconfig.org/install-microsoft-fonts-on-ubuntu-20-04-focal-fossa-desktop
https://linuxconfig.org/install-microsoft-fonts-on-ubuntu-20-04-focal-fossa-desktop
https://docs.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio-code

2. Creating “Convert PDF to DOCX” application

Create a new folder in your Linux machine with the name pdf to docx.

For example, let’s create the folder “pdf to docx” on Desktop (Right click-> New Folder):

Open VS Code and click in the menu File->Open Folder. From the dialog, open the folder

you’ve created previously:

Now, open the integrated console – the Terminal: follow to the menu Terminal -> New

Terminal (or press Ctrl+Shift+’):

Create a new console application, using dotnet command.

Type this command in the Terminal console: dotnet new console

Now we are going to modify this simple application into an application that will convert

a pdf file to a docx file.

First of all, we need to add the package reference to the sautinsoft.document assembly

using Nuget or the file SautinSoft.Document.dll with additional references.

In order to do it, follow to the Explorer and open project file “pdf to docx.csproj” :

In the first case (NuGet):

In the second case (SautinSoft.Document.dll):

At once as we’ve added the package references, we have to save the “pdf to docx.csproj”

and restore the added packages.

Follow to the Terminal and type the command: dotnet restore

Good, now our application has all the references and we can write the code to convert pdf

to docx and other formats.

Follow to the Explorer, open the Program.cs, remove all the code and type the new:

The code:

using SautinSoft.Document;

namespace pdf_to_docx

{

 class Program

 {

 static void Main(string[] args)

 {

 string inpFile = "/example.pdf";

 string outFile = Path.ChangeExtension(inpFile,".docx");

 DocumentCore dc = DocumentCore.Load(inpFile);

 dc.Save(outFile);

 }

 }

}

To make tests, we need an input PDF document. For our tests, let’s place a PDF file with the

name “example.pdf” at the Desktop.

If we open this file in the default PDF Viewer, we’ll its contents:

Launch our application and convert the “example.pdf” into “example.docx”, type the

command: dotnet run

If you don't see any exceptions, everything is fine and we can check the result

produced by the Document .Net library.

The new file “example.docx” has to appear on the Desktop:

Open the result in LibreOffice:

Well done! You have created the “PDF to DOCX” application under Linux!

3. Creating new DOCX document from scratch

Now we're going to develop a new application that will be able to create a new docx

document and to add some content in it.

As we did before, create a new folder and name it "create docx". Open this folder within

VS Code and repeat the same steps as done before, creating a new console project,

adding dependencies and so on.

Once you have done and are ready to code your new program, type this within Program.cs

as shown in the picture below (the complete code is after the picture):

The code:

using System;

using SautinSoft.Document;

namespace create_docx

{

 class Program

 {

 static void Main(string[] args)

 {

// Сhange to your output path

 string docxFile = @"/home/jorgen/Desktop/Result.docx";

 DocumentCore dc = new DocumentCore();

 Section section = new Section(dc);

 section.PageSetup.PaperType = PaperType.A4;

 dc.Sections.Add(section);

 // Way 1: Add 1st paragraph.

 Paragraph par1 = new Paragraph(dc);

 par1.ParagraphFormat.Alignment = HorizontalAlignment.Center;

 section.Blocks.Add(par1);

 // Let's create a characterformat for text in the 1st paragraph.

 CharacterFormat cf = new CharacterFormat() { FontName = "Verdana", Size = 16,

FontColor = Color.Orange };

 Run text1 = new Run(dc, "This is a first line in 1st paragraph!");

 text1.CharacterFormat = cf;

 par1.Inlines.Add(text1);

 // Let's add a line break into our paragraph.

 par1.Inlines.Add(new SpecialCharacter(dc, SpecialCharacterType.LineBreak));

 Run text2 = text1.Clone();

 text2.Text = "Let's type a second line.";

 par1.Inlines.Add(text2);

 // Way 2 (easy): Add 2nd paragraph using ContentRange.

 dc.Content.End.Insert("\nThis is a first line in 2nd paragraph.", new

CharacterFormat() { Size = 25, FontColor = Color.Blue, Bold = true });

 SpecialCharacter lBr = new SpecialCharacter(dc, SpecialCharacterType.LineBreak);

 dc.Content.End.Insert(lBr.Content);

dc.Content.End.Insert("This is a second line.", new CharacterFormat() { Size = 20,

FontColor = Color.DarkGreen, UnderlineStyle = UnderlineType.Single });

 // Save a document to a file into DOCX format.

 dc.Save(docxFile, new DocxSaveOptions());

 // Open the result for demonstration purposes.

 System.Diagnostics.Process.Start(new

System.Diagnostics.ProcessStartInfo(docxFile) { UseShellExecute = true });

 }

 }

}

Launch our application to create a new DOCX document, type the command: dotnet run

If you don't see any exceptions, the produced DOCX file will be opened automatically in

the default DOCX viewer (in our case it’s LibreOffice):

Well done! You have created the “Create DOCX” application under Linux!

If you have any troubles or need extra code, or help, don’t hesitate to ask our SautinSoft

Team at support@sautinsoft.com!

mailto:support@sautinsoft.com

